

Solutions Manual

Internal Combustion Engines:
Applied Thermosciences
(Fourth Edition)

Professor Allan T. Kirkpatrick
Mechanical Engineering Department
Colorado State University
Fort Collins, CO

June 1, 2020

Contents

1	Introduction to Internal Combustion Engines	1
2	Heat Engine Cycles	15
3	Fuel, Air, and Combustion Thermodynamics	43
4	Fuel-Air Combustion Processes	69
5	Intake and Exhaust Flow	97
6	Fuel and Air Flow in the Cylinder	119
7	Combustion Processes in Engines	129
8	Emissions	145
9	Fuels	169
10	Friction and Lubrication	179
11	Heat Transfer	195
12	Engine Testing and Control	213
13	Overall Engine Performance	227

Chapter 1

Introduction to Internal Combustion Engines

1.1) Compute the mean piston speed, bmeep (bar), torque (Nm), and the power per piston area for the engines listed in Table 1.2.

Engine	Bore (mm)	Stroke (mm)	Cylinders	Speed (rpm)	Power (kW)
Marine	136	127	12	2600	1118
Truck	108	95	8	6400	447
Airplane	86	57	8	10500	522

Table 1.2 Engine Data for Homework Problems

a)

$$\begin{aligned}
 \bar{U}_p &= 2Ns \\
 \bar{U}_p &= 2 \cdot 2600 \frac{\text{rev}}{\text{min}} \cdot \frac{\text{min}}{60\text{s}} \cdot 0.127 = 11.01 \text{ m/s} \\
 &= 2 \cdot 6400 \cdot \frac{1}{60} \cdot 0.095 = 20.27 \text{ m/s} \\
 &= 2 \cdot 10,500 \cdot \frac{1}{60} \cdot 0.057 = 19.95 \text{ m/s}
 \end{aligned}$$

b)

$$\begin{aligned}
 \text{bmeep} &= \frac{2\dot{W}}{V_d N} = \frac{2\dot{W}}{n_c \left(\frac{\pi}{4}\right) (b)^2 (s)(N)} \\
 &= \frac{2 \cdot 1118}{12 \left(\frac{\pi}{4}\right) (0.136)^2 (0.127) \left(\frac{2600}{60}\right)} = 2.33 \times 10^3 \text{ kPa} = 23.3 \text{ bar} \\
 &= \frac{2 \cdot 447}{8 \left(\frac{\pi}{4}\right) (0.108)^2 (0.095) \left(\frac{6400}{60}\right)} = 1.20 \times 10^3 \text{ kPa} = 12.0 \text{ bar} \\
 &= \frac{2 \cdot 522}{8 \left(\frac{\pi}{4}\right) (0.086)^2 (0.057) \left(\frac{10,500}{60}\right)} = 2.25 \times 10^3 \text{ kPa} = 22.5 \text{ bar}
 \end{aligned}$$

c)

$$\begin{aligned}
 \tau &= \frac{\dot{W}}{2\pi N} \\
 &= \frac{(1118)(1000)}{(2\pi)(\frac{2600}{60})} = 4106.0 \text{ Nm} \\
 &= \frac{(447)(1000)}{(2\pi)(\frac{6400}{60})} = 667.0 \text{ Nm} \\
 &= \frac{(522)(1000)}{(2\pi)(\frac{10500}{60})} = 474.7 \text{ Nm}
 \end{aligned}$$

d)

$$\begin{aligned}
 \frac{\text{Power}}{\text{Piston Area}} &= \frac{\dot{W}}{n_c \left(\frac{\pi}{4}\right) (b)^2} \\
 &= \frac{(1118)}{12 \left(\frac{\pi}{4}\right) (0.136)^2} = 6413 \text{ kN/m}^2 \\
 &= \frac{(447)}{8 \left(\frac{\pi}{4}\right) (0.108)^2} = 6099 \text{ kN/m}^2 \\
 &= \frac{(522)}{8 \left(\frac{\pi}{4}\right) (0.086)^2} = 11,233 \text{ kN/m}^2
 \end{aligned}$$